MS004113-統計信号處理(原S004107)

發布者:王源發布時間:2018-04-23浏覽次數:2245

研究生課程開設申請表

 開課院(系、所):beat365正版唯一       

 課程申請開設類型: 新開□     重開     更名□請在内打勾,下同

課程

名稱

中文

統計信号處理

英文

Statistical Signal Processing

待分配課程編号

MS004113

課程适用學位級别

博士


碩士

總學時

32

課内學時

32

學分

2

實踐環節

課程設計

用機小時

16

課程類别

公共基礎     專業基礎     專業必修     專業選修

開課院()

beat365正版唯一

開課學期

春季

考核方式

A.筆試(開卷   閉卷)      B. 口試    

C.筆試與口試結合                 D. □其他

課程負責人

教師

姓名

方世良

職稱

教授

e-mail

slfang@seu.edu.cn

網頁地址


授課語言


課件地址


适用學科範圍

一級

所屬一級學科名稱

信息與通信工程

實驗(案例)個數

2

先修課程

随機過程、信号與系統、數字信号處理

教學用書

教材名稱

教材編者

出版社

出版年月

版次

主要教材

統計信号處理基礎

方世良




主要參考書

随機信号處理

陳炳和

國防工業出版社

1996


An Introduction to statistical signal processing with Applications

M.D.Srinath

&P.K.Rajasekaran




Detection,Estimation,and Modulation Theory

Harry L.Van Trees





一、課程介紹(含教學目标、教學要求等)300字以内)

建立從統計觀點出發的信号處理基本觀念,掌握信号處理的基本環節:檢測、估計、統計識别、多元陣列統計信号處理的主要概念和方法。了解信号處理系統的總體設計思路和結構。為研究生進一步學習和研究信号處理奠定基礎。

二、教學大綱(含章節目錄):(可附頁)

1  緒論

2  統計信号處理基礎

3  檢測理論

  1. bayes準則

  2. 其它準則

  3. 接收機工作特性

  4. 多元假設檢驗

  5. 複合假設檢驗

  6. 序列檢驗

4背景噪聲中信号的檢測

  1. 确知信号檢測

  2. 随機參量信号檢測

  3. 高斯信号檢測

  4. 最佳線性濾波器

5信号參量的估計

  1. 概述

  2. 估計量的性質

  3. 随機參量的估計

  4. 最大似然估計

  5. 線性最小均方估計

  6. 最小二乘估計

6波形估計

  1. 概述

  2. 維納濾波

  3. 卡爾曼濾波

  4. 卡爾曼濾波的推廣

  5. 最小二乘估計

7Robust檢測和Robust估計初探

  1. Robust檢測

  2. Robust估計

8信号頻譜分析

9多元陣列信号處理

10統計信号分類識别

11  模糊函數

三、教學周曆

 周次

 教學内容

 教學方式

1

緒論,統計信号處理基礎,bayes準則

講課

2

檢測理論:其它準則,接收機工作特性,多元假設檢驗,複合假設檢驗,序列檢驗

講課

3

背景噪聲中信号的檢測:确知信号檢測,随機參量信号檢測,高斯信号檢測

講課

4

背景噪聲中信号的檢測:最佳線性濾波器

講課

5

課程設計一:非白噪聲中信号的檢測

上機

6

信号參量的估計

講課

7

波形估計:概述,維納濾波,卡爾曼濾波及推廣,最小二乘估計

講課

8

課程設計二:卡爾曼濾波

上機

9

Robust檢測和Robust估計初探

講課

10

信号頻譜分析

講課

11

陣列信号處理

講課

12

統計信号分類識别

講課

13

模糊函數

講課

14

考試


15



四、主講教師簡介:

方世良,男,19598月出生,教授,博士生導師。研究方向為信号與信息處理。主要從事信号處理、水聲電子工程等領域的研究工作,對信号檢測、估計和目标分類識别、陣列信号處理及軟硬件系統開發等有較深入的研究。先後負責和參加十多項型号、設備、預研等重點科研項目的研究,獲國家科技進步二、三等獎各一項,部級科技進步一、三等獎各二項,二等獎四項。現為中國聲學學會青年工作委員會委員、中國聲學學會理事、水聲學會委員、江蘇省聲學學會副理事長。

五、任課教師信息(包括主講教師):

 任課

 教師

 學科

 (專業)

 辦公

 電話

 住宅

 電話

 手機

 電子郵件

 通訊地址

 郵政

 編碼

 方世良

 信号與信息處理




slfang@seu.edu.cn

 beat365正版唯一

210096





Application Form For Opening Graduate Courses

School (Department/Institute)School of Information Science and Engineering

Course Type: New Open □   Reopen    Rename □Please tick in □, the same below

Course Name

Chinese

統計信号處理

English

Statistical Signal Processing

Course Number

MS004113

Type of Degree

Ph. D


Master

Total Credit Hours

32

In Class Credit Hours

32

Credit

2

Practice

Experiments

Computer-using Hours

16

Course Type

Public Fundamental    □Major Fundamental    □Major Compulsory     □Major Elective

School (Department)

School of Information Science and Engineering

Term

springtime

Examination

A.Paper √Open-book   □ Closed-bookB. □Oral   

C. □Paper-oral Combination                       D. □ Others

Chief

Lecturer

Name

Fang Shiliang

Professional Title

Professer

E-mail

slfang@seu.edu.cn

Website


Teaching Language used in Course

Chinense

Teaching Material Website


Applicable Range of Discipline

One class

Name of First-Class Discipline

Information and communication Engieering

Number of Experiment

2

Preliminary Courses

Probability and statistical process

Teaching Books

Textbook Title

Author

Publisher

Year of Publication

Edition Number

Main Textbook






Main Reference Books

Random signal processing

Chen Binhe

Publishing House of national defence Industry

1996


An Introduction to statistical with Applications

M.D.Srinath

&P.K.Rajasekaran




Detection,Estimation, and Modulation Theory

Harry L.Van Trees

Jone Wiley &Sons,Inc

2001



  1. Course Introduction (including teaching goals and requirements) within 300 words:

In this course, the detection theory and the estimation theory are studied and some basic concepts about signal processing are established with statistical theory. The goal of this course is to develop these theories in a common mathematical framework and demonstrate how they can be used to solve wealth of practical problems in many diverse physical situations.


  1. Teaching Syllabus (including the content of chapters and sections. A sheet can be attached):

1  Introduction

2  Bases of Statistical Signal Processing

3  The Detection Theory

  1. Bayes Criterion

  2. Other Criterion

  3. Receive Operation Characteristic

  4. M Hypotheses Tests

  5. Composite Hypotheses Tests

  6. Sequence Tests

4Detection of Signals in Noise Background

  1. Detection of Known Signals

  2. Detection of Random Parameters Signals

  3. Detection of Gaossian Signals

  4. Optimum Linear Filters

5Estimation of Signal Parameters

  1. Introduction

  2. Properties of Estimator

  3. Estimation of Random Parameters

  4. Maximum Likelihood Estimation

  5. Linear Minimum Mean Square Estimation

  6. Minimum Square Estimation

6Estimation of Waveforms

  1. Introduction

  2. Wiener Filters

  3. Kalman Filters

  4. Generalization of Kalman Filters

  5. Minimum Square Estimation of Waveforms

7Robust Detection and Robust Estimation

  1. Robust Detection

  2. Robust Estimation

8Spectrum Analyse

9Array Signal Processing

10Statistical Signal Recognition

11  Fuzzy Function


  1. Teaching Schedule:


Week

Course Content

Teaching Method

1

Introduction,Bases of Statistical Signal Processing, Bayes Criterion

Lecturing

2

Other Criterion, Receive Operation Characteristic M Hypotheses Tests, Composite Hypotheses Tests, Sequence Tests

Lecturing

3

Detection of Known Signals, Detection of Random Parameters Signals, Detection of Gaossian Signals

Lecturing

4

Optimum Linear Filters

Lecturing

5

Detection of Random Signals in Nonwhite Gaossian Noise

Experiment

6

Estimation of Signal Parameters

Lecturing

7

Wiener Filters, Kalman Filters,Minimum Square Estimation of Waveforms

Lecturing

8

Kalman Filters

Experiment

9

Robust Detection and Robust Estimation

Lecturing

10

Spectrum Analyse

Lecturing

11

Array Signal Processing

Lecturing

12

Statistical Signal Recognition

Lecturing

13

Fuzzy Function

Lecturing

14

examination


15



Note: 1.Above one, two, and three items are used as teaching Syllabus in Chinese and announced on the Chinese website of Graduate School. The four and five items are preserved in Graduate School.


2. Course terms: Spring, Autumn , and Spring-Autumn term.  

3. The teaching languages for courses: Chinese, English or Chinese-English.

4. Applicable range of discipline: public, first-class discipline, second-class discipline, and third-class discipline.

5. Practice includes: experiment, investigation, research report, etc.

6. Teaching methods: lecture, seminar, practice, etc.

7. Examination for degree courses must be in paper.

8. Teaching material websites are those which have already been announced.

9. Brief introduction of chief lecturer should include: personal information (date of birth, gender, degree achieved, professional title), research direction, teaching and research achievements. (within 100-500 words)


  1. Brief Introduction of Chief lecturer:

Name: Fang Shiliang

Sex: male

Birth date: August , 1960

Professional Title: Professor

Research specialities are underwater acoustic engineering, signal processingand its application. Research interests include acoustic signal detection, signal parameter estimation, target recognitionand so on. Many science researchprogramswere well achieved. Many science and technology progress awards were won.




  1. Lecturer Information (include chief lecturer)


Lecturer

Discipline

(major)

Office

Phone Number

Home Phone Number

Mobile Phone Number

Email

Address

Postcode

Fang Shiliang

Signal Processing




slfang@seu.edu.cn


210096







9




Baidu
sogou