研究生課程開設申請表
開課院(系、所):beat365正版唯一
課程申請開設類型: 新開□ 重開√ 更名□(請在□内打勾,下同)
課程 名稱 | 中文 | 統計信号處理 | |||||||||||
英文 | Statistical Signal Processing | ||||||||||||
待分配課程編号 | MS004113 | 課程适用學位級别 | 博士 | 碩士 | √ | ||||||||
總學時 | 32 | 課内學時 | 32 | 學分 | 2 | 實踐環節 | 課程設計 | 用機小時 | 16 | ||||
課程類别 | □公共基礎 □ 專業基礎 □ 專業必修 □√專業選修 | ||||||||||||
開課院(系) | beat365正版唯一 | 開課學期 | 春季 | ||||||||||
考核方式 | A.√筆試(√開卷 □閉卷) B. □口試 C.□筆試與口試結合 D. □其他 | ||||||||||||
課程負責人 | 教師 姓名 | 方世良 | 職稱 | 教授 | |||||||||
slfang@seu.edu.cn | 網頁地址 | ||||||||||||
授課語言 | 課件地址 | ||||||||||||
适用學科範圍 | 一級 | 所屬一級學科名稱 | 信息與通信工程 | ||||||||||
實驗(案例)個數 | 2 | 先修課程 | 随機過程、信号與系統、數字信号處理 | ||||||||||
教學用書 | 教材名稱 | 教材編者 | 出版社 | 出版年月 | 版次 | ||||||||
主要教材 | 統計信号處理基礎 | 方世良 | |||||||||||
主要參考書 | 随機信号處理 | 陳炳和 | 國防工業出版社 | 1996 | |||||||||
An Introduction to statistical signal processing with Applications | M.D.Srinath &P.K.Rajasekaran | ||||||||||||
Detection,Estimation,and Modulation Theory | Harry L.Van Trees |
一、課程介紹(含教學目标、教學要求等)(300字以内)
建立從統計觀點出發的信号處理基本觀念,掌握信号處理的基本環節:檢測、估計、統計識别、多元陣列統計信号處理的主要概念和方法。了解信号處理系統的總體設計思路和結構。為研究生進一步學習和研究信号處理奠定基礎。
二、教學大綱(含章節目錄):(可附頁)
1 緒論
2 統計信号處理基礎
3 檢測理論
bayes準則
其它準則
接收機工作特性
多元假設檢驗
複合假設檢驗
序列檢驗
4背景噪聲中信号的檢測
确知信号檢測
随機參量信号檢測
高斯信号檢測
最佳線性濾波器
5信号參量的估計
概述
估計量的性質
随機參量的估計
最大似然估計
線性最小均方估計
最小二乘估計
6波形估計
概述
維納濾波
卡爾曼濾波
卡爾曼濾波的推廣
最小二乘估計
7Robust檢測和Robust估計初探
Robust檢測
Robust估計
8信号頻譜分析
9多元陣列信号處理
10統計信号分類識别
11 模糊函數
三、教學周曆
周次 | 教學内容 | 教學方式 |
1 | 緒論,統計信号處理基礎,bayes準則 | 講課 |
2 | 檢測理論:其它準則,接收機工作特性,多元假設檢驗,複合假設檢驗,序列檢驗 | 講課 |
3 | 背景噪聲中信号的檢測:确知信号檢測,随機參量信号檢測,高斯信号檢測 | 講課 |
4 | 背景噪聲中信号的檢測:最佳線性濾波器 | 講課 |
5 | 課程設計一:非白噪聲中信号的檢測 | 上機 |
6 | 信号參量的估計 | 講課 |
7 | 波形估計:概述,維納濾波,卡爾曼濾波及推廣,最小二乘估計 | 講課 |
8 | 課程設計二:卡爾曼濾波 | 上機 |
9 | Robust檢測和Robust估計初探 | 講課 |
10 | 信号頻譜分析 | 講課 |
11 | 陣列信号處理 | 講課 |
12 | 統計信号分類識别 | 講課 |
13 | 模糊函數 | 講課 |
14 | 考試 | |
15 |
四、主講教師簡介:
方世良,男,1959年8月出生,教授,博士生導師。研究方向為信号與信息處理。主要從事信号處理、水聲電子工程等領域的研究工作,對信号檢測、估計和目标分類識别、陣列信号處理及軟硬件系統開發等有較深入的研究。先後負責和參加十多項型号、設備、預研等重點科研項目的研究,獲國家科技進步二、三等獎各一項,部級科技進步一、三等獎各二項,二等獎四項。現為中國聲學學會青年工作委員會委員、中國聲學學會理事、水聲學會委員、江蘇省聲學學會副理事長。
五、任課教師信息(包括主講教師):
任課 教師 | 學科 (專業) | 辦公 電話 | 住宅 電話 | 手機 | 電子郵件 | 通訊地址 | 郵政 編碼 |
方世良 | 信号與信息處理 | slfang@seu.edu.cn | beat365正版唯一 | 210096 |
Application Form For Opening Graduate Courses
School (Department/Institute):School of Information Science and Engineering
Course Type: New Open □ Reopen √ Rename □(Please tick in □, the same below)
Course Name | Chinese | 統計信号處理 | |||||||||||||
English | Statistical Signal Processing | ||||||||||||||
Course Number | MS004113 | Type of Degree | Ph. D | Master | √ | ||||||||||
Total Credit Hours | 32 | In Class Credit Hours | 32 | Credit | 2 | Practice | Experiments | Computer-using Hours | 16 | ||||||
Course Type | □Public Fundamental □Major Fundamental □Major Compulsory □Major Elective | ||||||||||||||
School (Department) | School of Information Science and Engineering | Term | springtime | ||||||||||||
Examination | A.√Paper(□ √Open-book □ Closed-book)B. □Oral C. □Paper-oral Combination D. □ Others | ||||||||||||||
Chief Lecturer | Name | Fang Shiliang | Professional Title | Professer | |||||||||||
slfang@seu.edu.cn | Website | ||||||||||||||
Teaching Language used in Course | Chinense | Teaching Material Website | |||||||||||||
Applicable Range of Discipline | One class | Name of First-Class Discipline | Information and communication Engieering | ||||||||||||
Number of Experiment | 2 | Preliminary Courses | Probability and statistical process | ||||||||||||
Teaching Books | Textbook Title | Author | Publisher | Year of Publication | Edition Number | ||||||||||
Main Textbook | |||||||||||||||
Main Reference Books | Random signal processing | Chen Binhe | Publishing House of national defence Industry | 1996 | |||||||||||
An Introduction to statistical with Applications | M.D.Srinath &P.K.Rajasekaran | ||||||||||||||
Detection,Estimation, and Modulation Theory | Harry L.Van Trees | Jone Wiley &Sons,Inc | 2001 |
Course Introduction (including teaching goals and requirements) within 300 words:
In this course, the detection theory and the estimation theory are studied and some basic concepts about signal processing are established with statistical theory. The goal of this course is to develop these theories in a common mathematical framework and demonstrate how they can be used to solve wealth of practical problems in many diverse physical situations.
Teaching Syllabus (including the content of chapters and sections. A sheet can be attached):
1 Introduction
2 Bases of Statistical Signal Processing
3 The Detection Theory
Bayes Criterion
Other Criterion
Receive Operation Characteristic
M Hypotheses Tests
Composite Hypotheses Tests
Sequence Tests
4Detection of Signals in Noise Background
Detection of Known Signals
Detection of Random Parameters Signals
Detection of Gaossian Signals
Optimum Linear Filters
5Estimation of Signal Parameters
Introduction
Properties of Estimator
Estimation of Random Parameters
Maximum Likelihood Estimation
Linear Minimum Mean Square Estimation
Minimum Square Estimation
6Estimation of Waveforms
Introduction
Wiener Filters
Kalman Filters
Generalization of Kalman Filters
Minimum Square Estimation of Waveforms
7Robust Detection and Robust Estimation
Robust Detection
Robust Estimation
8Spectrum Analyse
9Array Signal Processing
10Statistical Signal Recognition
11 Fuzzy Function
Teaching Schedule:
Week | Course Content | Teaching Method |
1 | Introduction,Bases of Statistical Signal Processing, Bayes Criterion | Lecturing |
2 | Other Criterion, Receive Operation Characteristic M Hypotheses Tests, Composite Hypotheses Tests, Sequence Tests | Lecturing |
3 | Detection of Known Signals, Detection of Random Parameters Signals, Detection of Gaossian Signals | Lecturing |
4 | Optimum Linear Filters | Lecturing |
5 | Detection of Random Signals in Nonwhite Gaossian Noise | Experiment |
6 | Estimation of Signal Parameters | Lecturing |
7 | Wiener Filters, Kalman Filters,Minimum Square Estimation of Waveforms | Lecturing |
8 | Kalman Filters | Experiment |
9 | Robust Detection and Robust Estimation | Lecturing |
10 | Spectrum Analyse | Lecturing |
11 | Array Signal Processing | Lecturing |
12 | Statistical Signal Recognition | Lecturing |
13 | Fuzzy Function | Lecturing |
14 | examination | |
15 |
Note: 1.Above one, two, and three items are used as teaching Syllabus in Chinese and announced on the Chinese website of Graduate School. The four and five items are preserved in Graduate School.
2. Course terms: Spring, Autumn , and Spring-Autumn term.
3. The teaching languages for courses: Chinese, English or Chinese-English.
4. Applicable range of discipline: public, first-class discipline, second-class discipline, and third-class discipline.
5. Practice includes: experiment, investigation, research report, etc.
6. Teaching methods: lecture, seminar, practice, etc.
7. Examination for degree courses must be in paper.
8. Teaching material websites are those which have already been announced.
9. Brief introduction of chief lecturer should include: personal information (date of birth, gender, degree achieved, professional title), research direction, teaching and research achievements. (within 100-500 words)
Brief Introduction of Chief lecturer:
Name: Fang Shiliang
Sex: male
Birth date: August , 1960
Professional Title: Professor
Research specialities are underwater acoustic engineering, signal processingand its application. Research interests include acoustic signal detection, signal parameter estimation, target recognitionand so on. Many science researchprogramswere well achieved. Many science and technology progress awards were won.
Lecturer Information (include chief lecturer)
Lecturer | Discipline (major) | Office Phone Number | Home Phone Number | Mobile Phone Number | Address | Postcode | |
Fang Shiliang | Signal Processing | slfang@seu.edu.cn | 210096 |