劉升恒

發布者:沈如達發布時間:2018-11-29浏覽次數:19525

職稱:副教授/博導

辦公室:南京市江甯區秣周東路9号中國無線谷A5-215

辦公電話:

Email

學習經曆:

●     2006.09—2010.06

北京理工大學

本科生(保送直博)

●     2010.09—2017.03

北京理工大學

博士研究生

●     2015.10—2016.10

美國天普大學

國家公派聯合培養博士生

  

工作經曆:

●     2017.04—2018.08

英國愛丁堡大學

博士後

●     2018.09—至今

beat365正版唯一

副教授

●     2020.01—至今

網絡通信與安全紫金山實驗室

雙聘咨詢專家

  

教授課程:

《無源雷達探測中的信号處理(雙語研讨)本科三年級(春季)  專業選修課2020至今)

《現代數字信号處理》研究生一年級(秋季)  專業必修課2020至今)

《數字通信原理與系統》研究生一年級(春季)  專業必修課20192020

研究方向:

●   智能無線通信與探測

●   雷達信号處理

●   信号處理理論

*   更多信息詳見個人主頁:https://sites.google.com/site/shenghengliu/

獲獎情況:

●   2017年度中國通信學會優秀博士學位論文獎

●   2020年度南京市留學人員科技創新項目擇優資助

●   2021年江蘇省高等學校優秀科技創新團隊成員

●   2022年beat365正版唯一第29屆青年教師授課競賽三等獎

招生信息:

●   每年招生固定名額為:南京校區(學碩專碩均收,以推免生為主)4人、無錫校區(專碩)2人、蘇州校區(專碩)1人。

●   歡迎數理及(信号或通信)專業課基礎好、學習研究主動性強、性格積極樂觀的、有志于學術研究的同學們報考。

●   當前課題組主要推進以下三個方向的研究工作(以算法、理論研究為主線):(1) 雷達信号處理;   (2) 智能無線通信網絡;(3)   通信感知一體化。

●   課題組軟硬件條件充足,曆年來報考競争激烈,已畢業及在讀研究生均能在國際頂級學術會議或期刊發表研究成果。

論文著作:

近三年代表性期刊論文(标注*為通訊作者):

[J1]   Zheng, C., Liu, S.*, Huang, Y.*, Zhang, W., Yang, L.,   Unsupervised recurrent federated learning for edge popularity   prediction in privacy-preserving mobile edge computing networks, IEEE   Internet of Things Journal, vol. 9, no. 23, in press, (DOI:   10.1109/JIOT.2022.3189055).

[J2]   Pan, M., Liu, P.*, Liu, S., et al., Efficient joint DOA and TOA   estimation for indoor positioning with 5G picocell base stations, IEEE   Transactions on Instrumentation and Measurement, vol. 71, art. no. 8005219,   Aug. 2022.

[J3]   Mao, Z., Liu, S.*, Zhang, Y.D., Han, L., Huang, Y.*, Joint   DoA-range estimation using space-frequency virtual difference coarray, IEEE   Transactions on Signal Processing, vol. 70, pp. 2576–2592, May 2022.

[J4]   Liu, S., Zheng, C., Huang, Y.*, Quek, T.Q.S., Distributed   reinforcement learning for privacy-preserving dynamic edge caching, IEEE   Journal on Selected Areas in Communications, vol. 40, no. 3, pp. 749–760,   Mar. 2022.

[J5]   Meng, F., Liu, S., Huang, Y.*, Lu*, Z., Learning-aided beam   prediction in mmWave MU-MIMO systems for high-speed railway, IEEE   Transactions on Communications, vol. 70, no. 1, pp. 693–706, Jan. 2022.

[J6]   Xu, C., Liu, S.*, Yang, Z., Huang, Y.*, Wong, K.K., Learning   rate optimization for federated learning exploiting over-the-air   computation, IEEE Journal on Selected Areas in Communications,   vol. 39, no. 12, pp. 3742–3756, Dec. 2021.

[J7]   Zheng, C., Liu, S.*, Huang, Y.*, Yang, L., Hybrid policy   learning for energy-latency tradeoff in MEC-assisted VR video service, IEEE   Transactions on Vehicular Technology, vol. 70, no. 9, pp. 9006–9021,   Sept. 2021.

[J8]   Liu, S., Mao, Z., Zhang, Y.D., Huang, Y.*, Rank   minimization-based Toeplitz reconstruction for DoA estimation using coprime   array, IEEE Communications Letters, vol. 25, no. 7, pp.   2265–2269, July 2021.

[J9]   Xu, C., Liu, S., Zhang, C., Huang, Y.*, Lu, Z.*, Yang, L., Multi-agent   reinforcement learning based distributed transmission in collaborative   cloud-edge systems, IEEE Transactions on Vehicular Technology,   vol. 70, no. 2, pp. 1658–1672, Feb. 2021.

[J10]   Zhang, H., Shan, T., Liu, S.*, Tao, R., Performance evaluation   and parameter optimization of sparse Fourier transform, Signal   Processing, vol. 179, art. no. 107823, Feb. 2021.

[J11]   Liu, S.*, Huang, Y.*, Wu, H., Tan, C., Jia, J., Efficient   multi-task structure-aware sparse Bayesian learning for frequency-difference   electrical impedance tomography, IEEE Transactions on   Industrial Informatics, vol. 17, no. 1, pp. 463–472, Jan. 2021. (ESI高被引)

[J12]   Liu, S.*, Cao, R., Huang, Y.*, Ouypornkochagorn, T., Jia,   J., Time sequence learning for electrical impedance tomography using   Bayesian spatiotemporal priors, IEEE Transactions on   Instrumentation and Measurement, vol. 69, no. 9, pp. 6045–6057,   Sept. 2020.

[J13]   Zhang, H., Shan, T., Liu, S.*, Tao, R., Optimized sparse   fractional Fourier transform: Principle and performance analysis, Signal   Processing, vol. 174, art. no. 107646, Sept. 2020.

 

近三年代表性會議論文(均為通訊作者)                                         

[C1] Su, J.,   Meng, F.,Liu, S., Huang,   Y., Lu, Z., ‘Learning to predict and optimize imperfect MIMO system   performance: Framework and application’, in Proceedings of the 2022 IEEE   Global Communications Conference (GLOBECOM): Mobile & Wireless Networks   Symposium, pp. 1–6, Rio de Janeiro, Brazil, December 4–8, 2022.

[C2] He, Z.,Liu, S., Miao, X., Huang, Y.,   ‘Two-dimensional adaptive beamforming based on atomic-norm minimization’, in   Proceedings of the 2022 IEEE International Symposium on Phased Array Systems   and Technology (PAST), pp. 1–5, Waltham, MA, USA, October 11–14, 2022.

[C3] Su, J.,Liu, S., Huang, Y., Yuan, J., ‘Peak-to-average   power ratio reduction via symbol precoding in OTFS modulation’, in   Proceedings of the 2022 IEEE 95th Vehicular Technology Conference   (VTC2022-Spring), pp. 1–5, Helsinki, Finland, June 19–22, 2022.

[C4] Gong, Z.,Liu, S., Huang, Y., ‘Doppler   diversity reception for OTFS modulation’, in Proceedings of the 2022 IEEE   95th Vehicular Technology Conference (VTC2022-Spring), pp. 1–5, Helsinki,   Finland, June 19–22, 2022.

[C5] Liu, L.,Liu, S., Huang, Y., Amin,   M.G., ‘Joint DoA-range estimation using moving time-modulated frequency   diverse coprime array’, in Proceedings of the 2022 IEEE Radar Conference, pp.   1–5, New York City, NY, USA, March 21–25, 2022.

[C6] Ni, T.,Liu, S., Mao, Z., Huang, Y., ‘Information-theoretic   target localization with compressed measurement using FDA radar’, in Proceedings   of the 2022 IEEE Radar Conference, pp. 1–5, New York City, NY, USA, March   21–25, 2022.

[C7] Zheng, C.,Liu, S.,Huang,   Y.,Quek,   T.Q.S., ‘Privacy-preserving federated reinforcement learning for   popularity-assisted edge caching’, in Proceedings of the 2021 IEEE Global   Communications Conference (GLOBECOM), pp. 1–6, Madrid, Spain, December 7–11,   2021.

[C8] Zhang, Y.,Liu, S., Lu, Z., Meng, F.,   Huang, Y., ‘Learning-aided beam management for mmWave high-speed railway   networks’, in Proceedings of the 2021 IEEE Global Communications Conference   (GLOBECOM), pp. 1–6, Madrid, Spain, December 7–11, 2021.

[C9] Xu, C.,Liu, S., Huang, Y., Huang, C.,   Zhang, Z., ‘Over-the-air learning rate optimization for federated learning’, in   Proceedings of the IEEE International Conference on Communications (ICC   2021), Montreal, QC, Canada, June 14–23, 2021.

[C10] Cao, R., Liu,   S., Mao, Z., Huang, Y., ‘Doubly-Toeplitz-based interpolation for joint   DOA-range estimation using coprime FDA’, in Proceedings of the 2021 IEEE   Radar Conference, Atlanta, GA, USA, May 10–14, 2021.

[C11] Ni, T., Liu,   S., Mao, Z., Huang, Y., ‘Range-dependent beamforming using   space-frequency virtual difference coarray’,in Proceedings   of the 2021 IEEE Radar Conference, Atlanta, GA, USA, May 10–14, 2021.

[C12] Liu, C., Liu,   S., Mao, Z., Huang, Y., Wang, H., ‘Low-complexity parameter learning for   OTFS modulation based automotive radar’, in Proceedings of the 46th IEEE   International Conference on Acoustics, Speech and Signal Processing (ICASSP),   Toronto, ON, Canada, June 6–11, 2021.

[C13] Liu, C., Liu,   S., Zhang, C., Huang, Y., Wang, H., ‘Multipath propagation analysis and   ghost target removal for FMCW automotive radars’, in Proceedings of the 2020   IET International Radar Conference (IRC), Chongqing, China, November 4–6,   2020.

[C14] Xu, C.,Liu, S., Zhang, C., Huang, Y.,   Yang, L., ‘Joint user scheduling and beam selection in mmWave networks based   on multi-agent reinforcement learning’, in Proceedings of the 2020 IEEE 11th   Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou,   China, June 8–11, 2020.

[C15] Zheng, C.,   Liu, S., Huang, Y., Yang,   L., ‘MEC-enabled wireless VR video service: A learning-based mixed strategy   for energy-latency tradeoff’, in Proceedings of the 2020 IEEE Wireless   Communications and Networking Conference (WCNC), Seoul, South Korea, April   6–9, 2020.

科研項目:

項目名稱

項目類别

項目時間

工作類别

項目金額

雲邊端協同賦能的移動VR視頻智能傳輸理論與方法

國家自然科學基金項目

2021.01-2023.12

項目負責人

24萬元

汽車雷達探測關鍵算法研發

橫向預研項目

2022.05-2023.06

項目負責人

128萬元

基于多維特征學習的電阻抗層析成像與識别研究

江蘇省自然科學基金項目

2019.07-2022.06

項目負責人

20萬元

數據與模型協同驅動的智能邊緣傳輸網絡

國家重點研發計劃項目子課題

2019/07-2023/06

主要參與人

573

6G試驗驗證與技術評估研究

國家重點研發計劃項目子課題

2020/12-2023/11

主要參與人

104

5G場景下波束設計和特定信号探測

國家自然科學基金項目

2020.01-2023.12

主要參與人

260

近三年來部分發明專利:

專利号

專利名稱

專利類型

202210226277.0

定位參數估計方法、裝置、設備、存儲介質和程序産品

發明專利

202210045023.9

目标空間位置參數估計方法及裝置

發明專利

202111024093.8

信号到達角估計方法、裝置、電子設備及存儲介質

發明專利

202111503756.4

一種基于随機聚合波束成形的用戶設備選擇方法

發明專利

202110953367.5

一種基于變換域最大比合并的OTFS   調制信号檢測方法

發明專利

202110920003.7

相位偏差校正方法、裝置、計算機設備和存儲介質

發明專利

202110803841.6

OTFS 信号處理方法、裝置、設備及存儲介質

發明專利

202110502499.6

一種基線校準方法、裝置、網絡側設備及存儲介質

發明專利

202110144931.9

定位方法、裝置、計算機設備和存儲介質

發明專利

202110170759.4

目标角度和距離定位方法、裝置、雷達和存儲介質

發明專利

202110073349.8

一種基于秩最小化Toeplitz重構的互質陣波達方向估計

發明專利

202110616233.4

移動邊緣計算網絡中基于分布式強化學習的隐私保護動态邊緣緩存設計方法

發明專利

202110047037.X

一種基于貝葉斯學習的OTFS雷達目标參數估計方法

發明專利

PCT/CN2020/125255

終端定位方法、裝置、計算機設備和存儲介質

PCT國際專利

PCT/CN2021/124026

基于頻率分集的陣列天線的波束控制方法、系統及控制器

PCT國際專利

PCT/CN2021/143475

目标角度和距離确定方法、裝置、雷達和存儲介質,

PCT國際專利


Baidu
sogou